CZECH TECHNICAL
LULEA UNIVERSITY
UNIVERSITY IN PRAGUE

OF TECHNOLOGY

Streaming Novelty Detection in

Telemetry Data

Holger NiefSner

Thesis presented for the degree of

Space Master - Joint European Master in Space Science and Technology

Supervisor CTU: Prof. Tomas Pajdla

Supervisor Solenix: Yann Voumard

Czech Technical University, Prague, Czech Republic
Lulea University of Technology, Kiruna, Sweden

January 2017

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

DIPLOMA THESIS ASSIGNMENT

Student: Holger Niessner

Study programme: Cybernetics and Robotics
Specialisation: Systems and Control

Title of Diploma Thesis: Novelty Detection in Spacecraft Telemetry Data

Guidelines:

Spacecrafts capture, store and transmit vast amounts of data, that can not be processed by
human operators anymore. To make sense of the data, design a process for discovering
patterns and oddities in off-line data. Given monthly or more frequent data inputs, the
program should learn how to classify it and give reports on new findings. This thesis is done
in cooperation with Solenix [1]

1. Get familiar with Apache Spark and Elasticsearch

2. Learn the features of relevant Satellite mission and compile abstract model

3. Implement single machine learning algorithm on one-off data

4. Implement a pipeline to process data on a monthly basis

Bibliography/Sources:

[1] Kelleher, Mac Namee, D'Arcy: Machine Learning for Predictive Data Analysis

[2] Dude, Hart, Stork: Pattern Classification

[3] Karau, Konwinski, Wendell: Learning Spark

[4] Abbott: Applied Predictive Analytics: Principles and Techniques for the Professional Data

Analyst

Diploma Thesis Supervisor: Ing. Toméas Pajdla, Ph.D.

Valid until the summer semester 2016/2017

/:‘
//
VR

prof. Ing. Pavel Ripka, CSc.
Dean

prof. Ing{ Micha bek, DrSc.
Head of Department

Prague, March 11, 2016

I, Holger NiefSner confirm that the work presented in this thesis titled

‘Streaming Novelty Detection in Telemetry Data’ is my own.

I confirm that:

« This work was done wholly or mainly while in candidature for a research
degree at this University.

« Where any part of this thesis has previously been submitted for a degree
or any other qualifcation at this University or any other institution, this
has been clearly stated.

« Where I have consulted the published work of others, this is always
clearly attributed.

« Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work.

« I have acknowledged all main sources of help.

« Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-

tributed myself. :

v M A~

25.05.2017

Date

25.05.2017

Abstract

Modern satellites produce a large amount of telemetry data (> 10.000 param-
eters) among which the most important ones are monitored by operators dur-
ing passes. Processing this amount of data in real time exceeds the capability
of human-based analyses. This has led to a rise in the so-called big data and

machine learning systems that learn from this data.

In the last years, solutions have been developed for detecting previously un-
known situations in these parameters and in the system state in general. With
the desire to analyse data in real time an approach that leverages open source

technologies and distributed computing is desired.

This thesis gives a solution to the problem of live outlier detection in the en-
vironment of Space missions, especially the processing in the time-constraint

of a single overpass.

Table of Contents

Abstract

List of figures

List of tables

1 Introduction

1.1
1.2

Problem Statement

Thesisoutline

2 Theory: Concepts & Definitions

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8

Timeseries
Summarisation oL
Prediction
Novelty Detection
Normalisation
Movingaverage
Dimension reduction
2.7.1 Principal Component Analysis (PCA)

Distributed computingo oL

3 Data Review

3.1

Values

10

11
11
13
13
14
17
17
18
19
21

23

3.1.1 Range

3.12 SampleRate

Requirements
4.1 Data Pipeline

4.2 Development

Implementation

5.1 Data pipeline

toProduction

implementation

52 TechnologyStack

52.1 ApacheSpark L.

522 Scala&JVM

523 Katka&ZooKeeper

524 DB2Kafka

5.2.5 PlotMeisterTS

5.3 Algorithm .
5.3.1 Spirit

Evaluation

6.1 Benchmark
6.2 Setup. ...
6.3 Result . ..

6.4 Numberofnovelties.

6.5 Throughput
Conclusion

Future work

25
27
28

30
30
34
35
37
37
39
40
42
42

49
49
50
51
52
52

35

57

References

59

List of figures

2.1 Example of a 2D distribution with outliers 15
2.2 PCA transformationona2Ddataset 19
2.3 Distributed computing architecture 20
4.1 Simple depiction of data pipeline 27
5.1 Detailed figure of data transformation 31
5.2 Pipeline during development 31
5.3 Pipeline for production system 32
5.4 Overview Apache Spark Project 35
5.5 Basic message broker configuration 38
5.6 Example output of PlotMeisterTS 41
6.1 'Throughput Java Implementation 53
6.2 'Throughput Spirit-on-Spark Implementation 53

The figures produced by the author are shared under a CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

List of tables

2.1

3.1

4.1

6.1
6.2

Distributed Computing Overview 22

Name, Datatype and Number of entries for tables in database . 23

Requirements oL 27
Evaluated requirements 51
Algorithm result comparison 52

Chapter 1

Introduction

The grandest discoveries of science have been but the rewards of
accurate measurement and patient long-continued labour in the

minute sifting of numerical results. - Lord Kelvin

This chapter gives an introduction to the thesis including main motivation,

questions and objectives.

1.1 Problem Statement

Modern satellites produce large amounts of telemetry data. The most im-
portant parameters are monitored by operators during connections with a

ground-station, while others are analysed by engineers later-on if needed.

Every year satellites increase in complexity and gain more computing power.
This leads to an ever increasing amount of data that needs to be made avail-

able, analysed and understood. Novel situations, including onboard failures

8

or foreign circumstances, need to be detected. These events are hard to detect
for human operators, because they can be spread across a huge number of pa-
rameters in different time scales. Machines that watch the state and health ofa
satellite can hardly be trained to recognise situations that are novel when they

happen.

Technical solutions have been developed for detecting previously unknown
situations. The existing approach regarding the data processing is to send the
data from the satellite and wait until the result is computed before the next
overpass occurs. A more timely reaction is desired, preferably while contact to
the satellite remains. Therefore a system has to be devised, which can process

the data as a stream and give immediate feedback on detected novelties.

Novelty detection algorithms have been researched with live processing in
mind. Previous approaches in offline processing had a straightforward im-
plementation, because all data was available at the time of analysis. In stream-
ing algorithms the whole data set can not be reprocessed every time new in-
formation arrives. New techniques rely on dimensionality reduction to store
the knowledge about previous states in a highly reduced manner. This allows

faster computing with almost no loss in accuracy.

Big data analysis tasks often require more processing power than a single com-
puter can provide. A solution is to combine servers into large computing
pools. They provide easy access for a developer, who needs no knowledge
of the underlying structure. Opposed to the concentrated nature of a single
server, this pool is a distributed computing environment. Algorithms which
are executed in it, have to be adapted to its nature in order to leverage the in-

creased computing power.

From the initial problem scenario and the given environment, the objectives
for this thesis can be summarised as: Design a system which is able to detect
outliers in streaming telemetry data, especially in the time-constraint of a sin-

gle overpass.

1.2 Thesis outline

The following thesis is organised as follows: Chapter 2 gives a summary of
the necessary theoretical background with Chapter 3 explaining the given test
data. Requirements for the thesis project are given in Chapter 4. The imple-
mentation of the algorithms and the technology stack is described in Chapter
5. Chapter 6 then reveals the benchmark and its results. It is followed by the

conclusion in Chapter 7 and an outlook on future work in Chapter 8.

10

Chapter 2

Theory: Concepts & Definitions

This chapter gives a brief overview of the theoretical foundation for the re-
maining chapters. It provides necessary definitions of key terms and tech-

niques.

2.1 Timeseries

A collection of organised data over time is called a time series. Most mea-
surements in science and engineering are performed over time. A time series
therefore represents a collection of sequential values. Some familiar occur-
rences are daily stock market prices, monthly unemployment figures or yearly

population growth. [1]

In order to gain insights into the process creating these time series, one applies
different techniques like outlier detection, prediction, clustering or classifica-

tion. [2] Applications of these analyses include a wide range of problems such

11

as intrusion detection, economic forecasting or medical surveillance.

Telemetry or housekeeping data in a satellite is periodically saved. Therefore
each measurement, provided by a sensor or derived otherwise, belongs to a
time series. This allows us to process telemetry data with existing techniques,

such as novelty detection.

The mathematical description of a time series is:

(1) T — (t17t2,.. tn)Jtl 6 R

For simplicity we will focus only on sequences of scalars, although the tech-
niques are generally just as useful for vector series. Theoretically ¢ varies con-
tinuously in time, such as a temperature. In practice ¢ is sampled to a discrete
sequence of data points, which are equally spaced in time following a given

sampling rate.

A time series is often the result of an underlying process, for example the vary-
ing influence of the sun on a temperature. A time series can be univariate as
in the previous definition or multivariate when several series span multiple
dimensions in the same time range. They can cover the full range of data and
be of considerable length. When talking about streaming time series, we de-
fine them as semi-infinite series. Every time instant continuously extends the

series, like an ongoing temperature measurement saving data every minute.

In order to gain insights into the process creating a time series, one applies dif-

ferent tasks to it, for example outlier detection, prediction, or summarisation

(2].
Applications of these analyses include problems such as intrusion detection,

12

economic forecasting or medical surveillance. In the following sections I will
introduce some of these tasks and give a detailed explanation of novelty detec-

tion.

2.2 Summarisation

The task of summarisation (or segmentation) on time series creates an approx-
imation. It reduces the dimensionality while maintaining essential features.

The definition therefore is:

Given a time series T = (ty,t,,...t,), construct a model T of reduced di-
mensionality d < n such that T” closely approximates T. | R(7") — T'| < ¢,,

with R(7") as the reconstruction function and ¢, as error threshold.

This task aims to minimise the reconstruction error between a reduced rep-
resentation and the original time series. Several approaches have been re-
searched, the most common one is Piecewise Linear Approximation (PLA)
[3], which splits the series into segments and then fits polynomial models to

each of them.

2.3 Prediction

The task of prediction tries to create a model to forecast the next few values of

a series. The definition is:

Given a time series T = (¢, t,, . . . t,,), predict the k next values ¢, .1, ..., t, .4

that are most likely to occur.

13

Prediction is one of the most common tasks in real-life applications, such as

stock market forecasting, which relies heavily on a wealth of historic data.

2.4 Novelty Detection

A novelty can be defined as an ‘unexpected value or a sequence of values’ [4].
One of the first original definitions of an outlier is by [5]: “An observation
(or subset of observations) which appears to be inconsistent with the remain-
der of that set of data” Novelty detection therefore is the ability of a system
to recognise a sequence, which appears for the first time or does not fit into
the current context. It is an important issue in image scene analysis and in-
trusion detection. [6] Recognising frauds in the monetary system or faults in

mechanical machines are also important applications.

The terms novelty and outlier will be used interchangeably in this section, as

most literature in the field chooses to do so.

The satellite as an enclosed system packed with sensors in a harsh environment
provides an interesting case for detecting novelties. Repeating orbits give a

periodic baseline against which unexpected behaviour stands out.

A basic visual example is Figure 2.1, which is adapted from [7]. It shows the

main distribution in the center and three outliers in the lower right corner.

Novelty detection is a very challenging task, therefore there are different ap-
proaches that perform well on different types of data. There is no single best
model and success depends on statistical properties of the data and the applied

method. [8]

14

12 T T T T T T L

1F . 1

101 R 1

FEATURE Y
~
T

2 Il Il Il 1 1 1 1
0 1 2 3 4 5 6 7 8

FEATURE X

Figure 2.1: Example of a 2D distribution with outliers

Novelty detection is an important task in many safety critical environments
as an outlier indicates abnormal running conditions, like an aircraft engine
defect or a flow problem in a pipeline. Outlier detection can reveal a fault
on a factory production line by monitoring specific features of the products
and comparing the real-time data with either the features of normal products
or those for faults. Applications like credit card usage monitoring or mobile
phone monitoring are needed to detect a sudden change in the usage pattern

which may indicate fraudulent usage such as a stolen card or phone.[9]

A straightforward method for novelty detection in time series is based on fore-
casting. [10] A model is built from the historical values and is used later to
predict future values. If a predicted value differs from the observed value be-

yond a certain threshold, a novelty is detected. The threshold to be used for

15

detecting novelties is the main problem of detection based on forecasting.

The location of cash withdrawals with a credit-card as a time series, can be
used as an example for a threshold problem. Is the threshold range too large,
too little outliers are recognised. A malicious withdrawal on another conti-
nent would not trigger an anomaly. Is the threshold range too small, e.g. only
concerning the card-owners home town, a trip to another city would trigger

an anomaly.

Other approaches relying on a decision boundary include both Frequentist
and Bayesian approaches, information theory, extreme value statistics, sup-
port vector methods, other kernel methods, and neural networks.[11] These
methods need a training set that is selected to contain no or very few of the

novel class. The output is then compared to a novelty threshold, which usually

has to be defined before.

This difhiculty of setting a proper threshold has motivated methods like
classification, pattern-based and others. These analyse a sequence of a
given length and indicate whether they correspond to normal or anomalous
behaviour. Most time series are high dimensional, which makes detecting

anomaly patterns computationally expensive.

Pimentel et al. write in [11] “The complexity of modern high-integrity systems
is such that only a limited understanding of the relationships between the vari-
ous system components can be obtained. An inevitable consequence of this is
the existence of a large number of possible “abnormal” modes, some of which
may not be known a priori, which makes conventional multi-class classifica-
tion schemes unsuitable for these applications. A solution to this problem

is offered by novelty detection, in which a description of normality is learnt

16

by constructing a model with numerous examples representing positive in-
stances (i.e., data indicative of normal system behaviour). Previously unseen
patterns are then tested by comparing them with the model of normality, often

resulting in some form of novelty score.”

The following sections describe techniques to adapt and shape data in bene-
ficial ways. They improve the performance of analysis and machine learning

algorithms.

2.5 Normalisation

Normalisation or scaling is a common step in the pre-processing of data. It
brings different features to one scale, meaning a range of values, variance or
length. Not normalising the data often results in worse performance when

applying machine learning or data analytics algorithms. [12]

The two most common techniques are Min-Max Normalisation and Z-Score
Standardisation. Others are Decimal scaling, Bi-Normal Separation (BNS)

feature scaling [13] and Rank normalisation. [14].

2.6 Moving average
We calculate the moving average of the recent time series window, in order

to cancel out noise and minor fluctuations. The first approach is to simply

compute the average of the last n data points.

17

@) MA®) =Y a,

n

An incremental formular, with no need to store the past n values is given by:

(3) MA(t +]_) = MA(t) _ Tt—(n—1) + Tpy

n n

A more sophisticated technique is the weighted moving average, which mul-
tiplies the past values with a growing factor. The current value is taken as is,
while the oldest value is decreased the most.

_ Z?;()l g
(4) WMA(t) = 7271,10‘
i=0 i

2.7 Dimension reduction

Dimension reduction is the process of reducing the number of variables of a
given data set, by obtaining uncorrelated principal variables. It is often used
in the fields of machine learning and image processing, to decrease the size
of input data for algorithms. The number of principal variables, which store
the major characteristics, is usually much smaller than the original size, in the
worst-case scenario they are equal. Algorithms can process the result faster

and visualisation can be created more easily in 2D or 3D dimensions.

Dimension reduction consists of feature selection and extraction, whereas fea-
ture selection is the lesser point in this discussion. We will not limit the anal-

ysis to a subset of the data, therefore we focus on feature extraction.

The most common tactic to extract characteristic features is Principal Compo-

nent Analysis (PCA), a way to identify patterns and express the data in order

18

\ Feature 2 } Feature 2
Principal comp.

Principal comp.
\qrmuon 2 d,llOC!lOﬁ 1
Zi1, K
<
Xi2l . . X; - Xj
\» Ve
X . .':.(. r 4 -
i Feature 1 /o] X Feature 1
. N
/ Zj2

PCA
. 54

Algebra: orthonormal transform
Geomelry: axis rotation

Figure 2.2: PCA transformation on a 2D data set

to highlight their similarities and differences. It captures the linear correlation
between variables (or features) and transforms them into fewer linearly uncor-
related hidden variables. The goal is to find the subspace on which the data can
be represented the best. There are other approaches which are not limited to
the linear space, Manifold learning algorithms such as Self-organizing Map

(SOM) or Principal curves. [15]

2.7.1 PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA is one the most common techniques used in feature extraction. It is used
to eliminate insignificant components and reduce the representation of data

to the significant elements.[16]

PCA is defined as an orthogonal linear transformation from input data to a
new coordinate system such that the greatest variance comes to lie on the first
principal component, the second greatest variance on the second component,
etc. [17]. Figure 2.2, based on [18], shows the processing of a 2D data set with
PCA.

19

Network
Storage

Server

Compute Compute Compute
Node 1 Node 2 Node N

Figure 2.3: Distributed computing architecture

A four-step approach to implementing PCA is:

Obtain the Eigenvectors and Eigenvalues from the covariance matrix or

correlation matrix, or perform Singular Vector Decomposition.

« Sort eigenvalues in descending order and choose the k eigenvectors that
correspond to the k largest eigenvalues where k is the number of dimen-
sions of the new feature subspace (k < d)

« Construct the projection matrix W from the selected k eigenvectors

« Transform the original dataset X via W to obtain a k-dimensional fea-

ture subspace Y

Algorithms based on PCA are effective when all data is stored in one location.
Improvements have been developed to attenuate this data constraint. With a

slight decrease in accuracy

20

2.8 Distributed computing

A distributed system is a model in which components located on networked
computers communicate and coordinate their actions by passing messages.
The components interact with each other in order to achieve a common goal.

[19] Three significant characteristics of a distributed systems are:

1. concurrency of components Separate servers can work on tasks at the
same time. A goal can be achieved faster, if it can be separated into work-

loads that do not depend on each other.

2. lack of a global clock Each component in a distributed system needs to
manage its own clock. Separate clocks will drift apart and timing issues
can get introduced. This effect needs to be weakened by keeping the

same time in all system with the Network Time Protocol (NTP). [20]

3. independent failure of components A distributed system needs to be
fault tolerance to failures of single components or whole subparts of it.
Ifa server fails, the workload needs to be handled by another system and

not be dropped completely.

A distributed computing system can have one of many architectures, such as
client-server, n-tier or peer-to-peer. Sharing of resources is the main motiva-
tion for constructing a system to be distributed. The challenges stem from the
characteristics seen above, mainly that algorithms need to leverage the concur-
rency properly and components can be added, replaced or turned off during

normal operation.

21

A major benefit is the inherent scalability of a distributed system. If set up
properly, the system can be scaled to work faster by adding more computa-
tion power. This works up to a certain point, as with an increasing number of
servers the necessary network traffic to handle communication increases as

well.

The following table, which is based on [21], gives a concise summary of dis-

tributed computing.

Table 2.1: Distributed Computing Overview

Category Description

Resource constraints Memory, computational capacity and
communication bandwidth
High communication cost Communication cost is orders of
magnitude more than computation
costs
Distributed streaming data Processing data coming at different
rates from multiple distributed sensors
Dynamic nature Dynamic network topology, frequent
communication failures, mobility and
heterogeneity of nodes
Large-scale deployment Scalability issues with traditional
outlier detection algorithms
Identifying outlier sources Make distinction between errors,

events and malicious attacks

22

Chapter 3

Data Review

This chapter gives insight into the data set, provided by the collaboration of

Solenix [22] and ESA [23]. The data was collected over a three month period

from June until August 2015. Each time series is a sequence of values recorded

onboard a satellite in a currently active ESA mission.

Overall there are 4334 time series with 3.798.093.977 data points.

The database consists of five tables, that differ on the detail of value they can

store.

Table 3.1: Name, Datatype and Number of entries for tables in database

Name Datatype Nr. of entries
floatparamvalues decimal point 2.865.066.347
ssmallintparamvalues int 21.410.819
uintparamvalues unsigned int 103.804.948
umediumintparamvalues int 74.241.792
usmallintparamvalues int 733.570.071

23

Name Datatype Nr. of entries

Total 3.798.093.977

Each table consists of rows with PID, datetime and value.

3.1 Values

3.1.1 RANGE

Values in the data set vary widely. The range in one time series vary between

1092 and 16777215 or between 0 and 1.

This is caused by different units of measurement for each series. Every sensor
receives a temperature, voltage, acceleration or else. The enormous difference
in scale of time series could eftect the performance of algorithms in data min-
ing. Thus, it is one of the problems that we have to deal with in the implemen-

tation, with techniques such as normalisation, see Section 2.5.

3.1.2 SAMPLE RATE

All time series are recorded on one satellite. They still have different sampling
rates and are not synchronised. The total recording time of data is from 30.
June 2015 00:13:20 2015 UTC to 31. August 2015 23:59:58 2015 UTC. During
this period, different sensors saved values between 515 and 1482128 times,

with a mean of 622055 times.

24

Chapter 4

Requirements

This chapter introduces the requirements and the reasoning behind them.
They were developed in cooperation with Solenix [22], as the industry partner

providing insights into the desired product.

The main request is to design a system which is able to detect outliers in stream-

ing telemetry data, especially in the time-constraint of a single overpass.

This gives three requirements. First, the output of the system should be out-
liers which are novel or differ from normal operation. This inclusive defini-
tion of anomalies is desired as false positives can be easily discarded later by a
human operator. When forcing the systems to give no false alarms, it would
also recognise a smaller number of real outliers. A missed outlier can lead
to tremendous damage in the space segment. It is more expensive to miss an
outlier than to force the system to give no false alarm. Therefore the designed

system should err on the side of false positives.

Second, the operation is streaming or live. New data can come in anytime and

25

should be processed immediately. The system will be used in Space operations,
therefore we will set a requirement based on this environment. A satellite pass
is around 30 minutes, with half of it for processing and the other half for hu-
man interaction and responding to results of the analysis. If the system gives
an outlier signal, there should be enough time for operators to analyse and

react to the new information.

The third point is, as described in Chapter 3, the data is in form of time series.
No visual or textual information needs to be processed. The analysis is focused

on numerical values attached to specific points in time.

The designed system should be able to deliver novelty analysis for several ESA
missions, where each one has a different space segment. The approach of one
server per mission is not feasible, as it would waste computation capacity, gives

a single point of failure and can not adapt to the increasing demand.

Therefore it is desired but not mandatory, to leverage the power of distributed
computing (detailed description in Chapter 2.8). The nature of distributed
computing has benefits and drawbacks. With concurrency and independent
failure of components, we gain faster computing times with more computing
power, but need to handle losses of servers as well. This is a major point in
evaluating suitable algorithms. Is an algorithm scalable and does it leverage

the power of the distributed computing environment as much as possible?

After the analysis is done and the current processing step has stopped, the sys-
tem needs to give its results. It is not enough to have a single blinking light
to signal novelties. An operator must be able to quickly read the result of the
analysis, verify them with her domain knowledge and resolve the particular

situation. Therefore the output should include the time and duration of an

26

Data

Transformation Output

Figure 4.1: Simple depiction of data pipeline

outlier, as well as the anomalous time series.

Table 4.1 gives the requirements in a structured form:

Table 4.1: Requirements

Category Description

Input Telemetry Time series data
Output Novelties

Mode of Operation Streaming/Live
Algorithm Leverage distributed computing
Product Use system in real application

4.1 Data Pipeline

A data pipeline describes the information flow from an input through transfor-

mations to the output. In this section I will outline the desired configuration

in a production system, as well as the development setup.

A basic data pipeline can be seen in Figure 4.1. It describes the concept in a
general way because several complexities not shown. The distributed nature of

the transformations (see Chapter 2.8), as well as different data types for input

27

and output are not visible.

To consume live streaming data during the development of any analysis sys-
tem is not feasible. Nothing is gained by accessing current satellite data while
creating the system. Nevertheless, the project needs to be tested with real data

(see Chapter 3) to assure accurate performance when used in production.

The data pipeline should be simplified first, to build the core algorithms and
data handling, and then plug the system into a production environment. This
gives less configuration overhead and the developer can concentrate on im-

portant questions [24], such as:

1. Is the transformation reproducible?
2. Is the pipeline consistent?

3. Can all the pieces be shaped into a production system?

Regarding 1. and 2.: random seed generators are seeded with fixed values
which eliminates algorithmic randomness. The initial test dataset is fixed as

well, therefore the results are reproducible and the pipeline is consistent.

Question 3, is it possible to move this scientific thesis project into a production-

ready system, is addressed in the next section.

4.2 Development to Production

This section is concerned with the move of the project from a development

setup to a production-ready system.

A common pattern in software engineering regarding testing and deployment

28

is DTAP, short for development, testing, acceptance, and production. [25]

These describe environments or a cycle of stages that a project goes through.

As tests are an integral part of modern development and the acceptance stage
is not relevant for this project, this section discusses development and produc-

tion.

Development is the environment of an individual developer’s workstation. It
differs from production in several ways - the target may be a different device,
such as a smartphone, embedded system, or headless server. This stage in-
cludes development tools like a compiler, integrated development environ-
ment, and support software, which will not be part of the final system. With
test-driven development, short TDD, the additional testing stage merges into

this phase.

Production is the final environment and it concludes the initial project cycle.
The stage is only filled with the necessary code, binaries and configurations,
with as little overhead as possible. Deploying to production is the most sensi-

tive step in the entire engineering process.

The next chapter will explain the implementation of these requirements in this

project setup.

29

Chapter 5

Implementation

This chapter will give detailed information about the implementation, build-
ing on last chapter’s explanation of the requirements and the data pipeline.
This will give the reader a high-level overview of the design, as well as in-depth

knowledge of configuration and structure.

5.1 Data pipeline implementation

Following the general explanation in chapter 4.1, this section gives informa-

tion about the specific implementation of the data pipeline.

Figure 5.1 shows details of the transformation in the case of outlier analysis
with the Spirit algorithm (see 5.3.1). It shows three steps, from pre-processing
through the core algorithm to the outlier analysis. The development and pro-

duction environments differ in source and destination of the data.

Figures 5.2 and 5.3 depict the environments during development and produc-

30

[
, 1. moving average
1 2. normalisation

S
1 1. update error bound
! 2. find errors

\ 3. find similar time series

1
| 2. update weights '
1 3. reconstruction)

Transformation

Figure 5.1: Detailed figure of data transformation

offline

el

Message

Test User/
Developer

e

Broker ' '

] [Worker]

Computing [Work\erj [f I
Cluster) ¢

v
Driver

Figure 5.2: Pipeline during development

31

_——
Ground » DB
Station offline

Message # Computing [Work\e\'} [-] [\/l\iorker]
Broker Cluster '

¥
a

Figure 5.3: Pipeline for production system

32

tion. One can recognise the differences and similarities at a glance.

The design process was started with the initial requirements in mind (see
Chapter 4), to transform the system into a real-world application. This is why
the similarities include the messaging broker and computing cluster at the
core of both environments. Changing from development to production, the
data in- and outputs need to be changed. This is configured at only one single
point, the message broker. The computing cluster (see 2.8) can easily adapt to
new hardware, more servers and other configurations. The interconnection
with the message broker stays the same and during a move to production of

no concern.

As small packet format in JSON, the JavaScript Object Notation, was created
to facilitate easy compression and decompression across the whole technology
stack as described in 5.2. The format is small and simple in order to handle

packets in a fast and efficient way. An input data packet is described like this:

{
"ts": "NUMBER",
"data": [
{"PID": "NUMBER",'"value": "NUMBER"},
{"PID": "NUMBER","value": "NUMBER"},
{"PID": "NUMBER",'"value": "NUMBER"}
]
}

ts gives the timestamp of the following values, which are ordered by their PID,

the index of each time series.

33

An output data packet describing an outlier event is described like this:

{
"TS": [
{"PID": "NUMBER"},
{"PID": "NUMBER"},
{"PID": "NUMBER"}
1,
"from": "DATE",
"to": "DATE"
}

Following the requirements in Chapter 4, the packet contains:
TS is alist of indices of the time series that contribute to this outlier. from and

to are the dates between which the outlier is active.

5.2 Technology Stack

This section will give additional details on which technologies have been used
to implement the outlier detection system. The big data processing engine
Spark (section 5.2.1), the programming language Scala and its runtime en-
vironment JVM (section 5.2.2) and the message broker Kafka(section 5.2.3)
will be covered. DB2Kafka, the custom program which streams data from the
database into the message broker, as well as the distributed configuration ser-
vice ZooKeeper are explained. PlotMeisterTS, the custom script, which visu-

alised outlier data, is introduced with a short example.

34

Spark Spark .
soL Streaming MLIib GraphX
Spark Core
Standalone
Scheduler EC2 Mesos YARN

Figure 5.4: Overview Apache Spark Project

5.2.1 APACHE SPARK

The core of this thesis project is the cluster computing platform Spark [26].
Distributed by the Apache Software Foundation with initial development at
University of Berkeley, it is the most active big data open source project today
and still enjoys a rising popularity. Compared to its predecessor MapReduce
it is much faster, easier to use with richer APIs and has more functionality
such as interactive queries, streaming, machine learning, and graph process-

ing. [27]

As Spark is a general engine, it lets the user combine multiple types of compu-
tations, such as text-processing, SQL queries and text processing. This makes
it a good starting point for new developers, as well as scale existing projects to
a huge processing environment. Applications can be programmed in Python,

Scala and Java, with 77% of Spark itself written in Scala. [28]

Spark Core is responsible for scheduling, distributing and monitoring applica-

35

tions across worker machines or a computing cluster. It also contains the API
which defines resilient distributed datasets (RDDs), which are Spark’s basic

programming abstraction that defines data across computing nodes.

Spark SQL is the section that defines the work with structured data. It gives

functionality to query data via SQL and supports many sources of data, includ-

ing Hive tabls and JSON.

Spark Streaming allows the processing of live data streams, such as log files,
Twitter streams and time series data. It helps with hidden functionality to pro-

vide fault tolerance and scalability, just as Spark Core.

MLIib provides common machine learning functions, designed to scale across
a computation cluster. Algorithms for classification, regression and clustering
are available, as well as additional support through model evaluation and data

import.

GraphX is the Spark library for graphs, as in a social network’s friend graph.
It gives an abstraction layer on top of Spark RDDs to handle parallel computa-

tions such as subgraph searches and common algorithms such as PageRank.

YARN and Mesos are cluster managers to replace Sparks own Standalone
Scheduler, for cases where an application extends across many nodes and its

configuration needs to be fine-tuned.

Besides the filesystem on a single machine, Spark supports the Hadoop dis-
tributed filesystem (HDEFS) and others like Amazon S3, Cassandra and Hive.

This project uses the version 1.6.2 of the Spark project, as it fulfils all depen-

dencies and is the latest stable version.

36

5.2.2 ScALA & JVM

Scala is a Java-like programming language which unifies object-oriented and
functional programming. Every value is an object, therefore it is a pure object-
oriented language. Functions are handled like values, therefore it is a func-
tional language. Nesting of function definitions and higher-order functions

are supported.

Scala has been designed to interoperate with Java, as a developer can create
Scala classes that call Java methods, inherit from Java class and implement Java

interfaces. No glue code or other workarounds are necessary.

The aforementioned flexibility gives the developer a wide selection of tools
to choose the one that fits the task best. It provides easy access to all existing
libraries in Java and is statically typed, which lets the compiler find and display

errors before the program runs.

Scala source code is compiled to Java bytecode, which is executed in a Java vir-
tual machine (JVM). This allows the complete interoperability between the
two languages, with a lot of open-source projects providing nativ APIs for

both.

The created code in this project tries to follow the style described in Code

Complete [29]. This project uses the version 2.10.6 of the Scala language.

5.2.3 KAFKA & ZOOKEEPER

A message broker distributes messages from a sender to a receiver in a for-

mal messaging protocol. It mediates communication between applications in

37

Subscriber

Message Receiving

Publisher Broker ﬂ Message
Topics Receiving
wessage | > | T > | oot

Receiving
Message

Figure 5.5: Basic message broker configuration

order to decouple them, so that they have no or minimal awareness of each
other. A message broker can route, transform, and store messages, as well as
respond to errors or other events. Figure 5.5 depicts a simple message broker

configuration, based on [30].

They usually work as follows: a publisher creates one or more topics at the
central message broker. The publishers task then is to push new messages to
one topic. A receiver can subscribe to one or more of those topics and receive
the messages that are coming in. The message broker therefore is at the center

of the information flow. It needs to handle massive numbers of messages.

Besides the core processing engine Spark (see chapter 5.2.1), the message bro-
ker is the most important part in the data pipeline. It needs to handle the in-
and output in a non-blocking, safe and recoverable fashion. The data needs to

be stored redundant in order to preempt any cluster failure.

For these reasons, Apache Kafka was chosen as the message broker in this

project. Initial development was funded by LinkedIn and Kafka is now used

38

by companies such as Netflix, PayPal and Spotify. [31] [32] [33] The project
is written in Scala (see chapter 5.2.2) and provides a high-throughput, low-
latency platform for handling data feeds. Compared to other message broker,
like RabbitMQQ, it provides ordered delivery and support for simple message
re-reads. No complex routing to consumers and message delivery guarantee
is needed. Kafka can easily support more than a million packages per second.

[34]

Beneath the handling of messages by Kafka, a distributed configuration ser-
vice is needed. With a cluster manager like Apache ZooKeeper more produc-
ers and consumers are added to handle an increasing workload and guarantee

redundant performance and storage.

5.2.4 DB2KAFKkaA

During development there is no access to a satellite via ground stations. It is
desired to implement and test the sending and receiving of messages as well
as the algorithm in a computing environment. In order to avoid testing com-
ponents separately and neglect their interaction, the data has to be streamed

through the message broker to the processing engine.

As mentioned in Chapters 5.2.1 and 5.2.3, Spark and Kafka were chosen for
these tasks. The data is stored in a MySQL database during development. A
way to pull the data out of the database and stream it in chronological order
into Kafka was needed. No open-source project existed for this task, therefore
I created DB2Kafka. The software is written in Python3 [35] using existing

open-source projects such as PyMySQL and pykafka.

39

The data has to be sent in chronological order. The script converts the rela-
tional data in the database into a message for each timestamp, that is then sent
to the message broker. The format of these packets is described in Section 5.1.
As laid out in Chapter 3, the data is organised in tables for different data types,
such as floating point values or unsigned integers. The values for each point
in time get collected across these tables. As the further performance is of no
interest at this point in the pipeline (see decoupling in Chapter 5.2.3) the data
is pushed as fast as possible to the message broker. In order to stream contin-
uously, the program reads in chunks, formats the data into JSON packets and

sends them away. Then the cycle is repeated.

5.2.5 PLOTMEISTERTS

Visualising outliers in a quick way is an important part of the development
process (see Section 4.2). As no open-source tool was available for this task, I
created PlotMeisterTS. The software is written in Python3 [35] using existing
open-source projects such as PyMySQL and matplotlib. Figure 5.6 depicts
the timeseries of PID 977 over the course of close to 63 days. An visible and

recognised outlier occurs between 23. and 24. August.

The program expects the PID and point in time where an outlier occurred. It
then queries the database for a default time frame around the date. If there are
too little data points in this range, it is expanded dynamically. The outlier is

plotted when enough data points are available to visually confirm it.

PlotMeisterTS has several features that allow to check for outliers quickly.

The processing time is minimised by decreasing the number of queries to

40

PID 977 for 62 days, 23:46:38 h

!

!

!

25

20

15+

10 -

G10Z Gz bny

GT0Z 81 bny

GT0Z 1T bny

G10Z v0 bny

GToz 8z Inf

Groz 1z Inf

GTO0Z ¥T Inf

GT0Z LO Inf

Figure 5.6: Example output of PlotMeisterTS

41

the database. As the script knows which PID is stored in which table of
the database, initially only one request is necessary. If there is too little
information in the answer to the first request, e.g. an outlier is not clearly
visible, the time period is expanded. Only then multiple queries are required.
This happens without additional user interaction, which further decreases

the run time of the program.

The current configuration concentrates on the data of this thesis, but it can
be easily adapted to other missions. The changes for other missions are made
in a configuration file: the minimum and maximum values for a certain PID
timeseries have to be adapted, as well as the lists of PIDs that show in which
of the database table they are stored. As these values itself can be received by

querying the database, the migration to another mission requires little effort.

5.3 Algorithm

5.3.1 SPIRIT

The Streaming Pattern dlscoveRy in multlple Timeseries (short SPIRIT) is
an algorithm developed by researchers at Carnegie Mellon University. [36]
SPIRIT finds hidden variables, which summarise the key trends in a collection
of streaming time series and can recognise novelties due to sudden changes.
As it was designed as an algorithm for the live processing of data, it works on a
single pass over the data and does not compare each data stream against each
other. At any given time SPIRIT provides the number of hidden variables k&

and the weights w, ;. These weights can be seen as the contribution of the i-th

42

hidden variable to the reconstruction of time series j. Use cases for SPIRIT

are the summation of key trends, novelty detection and forecasting.

The benefits of SPIRIT are:

« streaming: it works incremental and is scalable, with memory and pro-
cessing power independent of the total stream length

« linear scaling: it does not spot correlations by calculating all n* pairs

« adaptive: it detects gradual and sudden changes dynamically and deter-

mines the number of hidden variables k£ automatically

In an example system at a time ¢, all time series possess a periodic pattern un-
der normal operation. SPIRIT discovers the correct number of hidden vari-
ables, which in this case is one which describes the periodicity of the pattern.
All time series follow this pattern, multiplied by a factor, which is the partic-
ipation weight w of each observed variable into the hidden variable. If an
event outside the normal operation occurs at time ¢ + 1, one or more new
hidden variables are added, to keep up with time series that are following a
chaotic/non-periodic pattern. If normal operation is resumed with all time
series in a periodic pattern as at time ¢, the number of hidden variables returns

to one again.

The algorithm is based on PCA (see Chapter 2.7.1). It is adapted to process
incoming data in the form of numerical streaming time series. Instead of com-
puting the eigenvectors and eigenvalues from the dataset as a whole, SPIRIT

builds the eigenvector incrementally from each incoming part of data.

With a # semi-infinite streams producing a value z,, for every time tick t =

1,2,...and every stream 1 < ¢ < n, Spirit follows these steps:

43

adapting the number hidden variables k necessary to summarise the
main trends in the data

adapting the participation weights w;, ; of the i-th stream on the hidden
variablej (1 < j < mand1 < ¢ < k), so as to produce an accurate
summary of the stream collection.

monitoring the hidden variables y, ; ,for1 < j <k

updating the variables efficiently

This can be transformed to pseudocode with the given result:

procedure TRACKW

Initialise £ hidden variables w; to unit vectors:
wy =[10...0]", w, =[010...0]7, etc.
Initialise d; (i=1, - - - k) to a small positive value
As each point z,, arrives, initialise £; = =,
fori: < 1,k do
Y; =W, T; > Y41, = projection onto w;

d; < d,+7y’ > energy proportional to i-th eigenvalue of X[X,

e; =T, — YW, > error, e; L w;
w; — w; + iyiei > update PC estimate
end for

Tip1 =T — YW,

end procedure

procedure SPIRIT

Initialise £ < 1

Initialise total energy estimates of x, and Z, to £ <— 0 and E, <0

44

while True do
TrackW >update w, for 1 <1i <k
Update estimates for 1 < i < k:

_ ll2 ~ (t-1)Ej+y2,
B« 00Ete® g i o v,

t

Estimate of retained energy is Fi,, = Y5, F,

if £, < fzE then
Initialise &£ hidden variables w, to unit vectors:
w; =[10...0]", w,=[010...0]", etc.
Initialise E, ., < 0
Increase k +— k + 1

elseif £, > F,E then
Discard w, and F,
Decrease k < k — 1

end if

end while

end procedure

The energy E, of the sequence z, is formally defined as:

n

1 1
Eo=22 el =223 %, (5.1)
T=1

T7=1 i=1

[and F}; are low-energy and high-energy thresholds. The reconstruction z,
of the algorithm therefore retains the portion of x, between these two levels.
According to recommendations in the literature [17] we use a lower energy

threshold f; = 0.95 and an upper energy threshold Fj; = 0.98.

The novelty detection algorithm in this thesis project is based on the SPIRIT

45

algorithm. The original description by Papadimitriou et al. and a previous
reference implementation in Matlab code [37] was given, the used SPIRIT al-

gorithm is implemented and extended in Scala and Java.

[ll-performing functions provided by the programming languages, such as

matrix rotations, are replaced by open-source libraries.

Colt by CERN [38] is a library for high performance scientific and technical
computing in Java, which provides fast matrix decomposition functionality.
Colt gave a larger speedup with less memory usage, compared to JAMA [39],

a Java matrix package, and EJML [40], a linear algebra library for Java.

The key step of the algorithm, as described above, is the principal compo-
nent analysis (PCA). In order to leverage the mentioned benefits of distributed

computing, PCA has to be compatible with this environment.

The basic implementation of PCA works when all of the data is available in
one place and fits into the available memory. The core algorithm relies on
matrix operations. The data in this project consists of thousands of time series
and can be thought of as one data matrix. In order to speed up the process of
dimension reduction, we need to find a way to distribute the PCA algorithm,

without relying on sending the total amount of data to every node.

This problem is solved, by following the instructions of Qu et al. in [41] with
the title ‘Principal component analysis for dimension reduction in massive
distributed data sets. It proposes a new method for computing a global prin-
cipal component analysis (PCA) for the purpose of dimension reduction in
data distributed across several locations. The approach given in the paper is

to perform local PCA on local data without data moving between computing

46

nodes. Only after local computation is done, the local PCA results are moved
to a central location and merged into a global PCA. The representation of local
data by a few local principal components greatly reduces data transfers with

minimal degradation in accuracy.

It reduces the communication between nodes, but introduces approximation
errors. The tradeoft is, that we introduce a small amount of approximation
for which we gain the omission of data transfers and synchronisation. For this
algorithm the central computing node or master can become the bottleneck of
computation and computations, but this is a problem we already introduced

by using Spark.

Each node has two requirements, of which at least one has to be met:
k, the number of local principal components, or «, the minimum local varia-

tion. The descriptive statistics at each location are:

« n,: the number of observations at the the 7**

location
« 7,: the vector of column means of ¢*" data set
« A;: diagonal matrix containing the k; largest eigenvalues

« U;: matrix whose columns are the k; eigenvectors corresponding to the

k; eigenvalues in A,
The following steps describe the core distributed PCA algorithm:

1. setlocal requirements v and k and receive local dataset

2. compute PCA locally

47

3. communicate descriptive statistics back to master node

4. compute the data covariance matrix S with

nS=X"I-n"11"X=X"X —n'zz" (5.2)

5. compute principal components n.S = UDU”
6. compute global dimensionally reduced representation of the data with

Speed gains are expected by merging the streaming algorithm Spirit with the
distributed PCA algorithm. Details on testing and evaluation follow in the

next chapter.

48

Chapter 6

Evaluation

This chapter explains the metrics used for comparing the implementations
and gives their results. The performances of the new Spirit-on-Spark system,
created during this thesis project, versus the existing Java implementation,

which is based on a previous Matlab codebase, are compared.

6.1 Benchmark

The following criteria are based on the requirements overview in Table 4.1.
The basic requirement for any algorithm is the proper detection of outliers in
the data. The outliers given as output by an algorithm can be visually con-

firmed by using the PlotMeisterTS tool, see 5.2.5.

As discussed in Chapter 4, the purpose of this project is to operate the algo-
rithm in a streaming mode, where data is delivered live from a satellite in orbit.

Related to this point is the desire to have the algorithm ready for a production

49

system, where the input funnel might be swapped, but the remaining system

stays the same. (see Chapter 4.2)

The major metric for usefulness of a system in live data analysis is the through-
put, given by objects processed per second. An object represents a package of
all data which was recorded at one specific timestamp across all available time
series. If all underlying basic requirements are met, the performance of an

algorithm is determined by this metric.

6.2 Setup

In order to make a meaningful comparison of the performance, we limit the
number of time series to 300. In several test runs, the average throughput was
measured until it converged against a specific value. This was repeated several
times on the same computer, to lessen the effect of other running processes

and their fluctuating memory usage.

The test computer is an Apple laptop (model MacBookPro12,1) with a 2.7
GHz Intel Core i5 processor and 16 GB 1867 MHz DDR3 memory. The offline
data in the SQL database is stored on an external USB3 SSD (model Samsung
MU-PT250B).

The messaging environment created by Zookeeper and Katka runs on the
same test computer, to minimise the effect of external network issues and
other problems not concerning the algorithms. This setup might differ from
a future production system, but gives close to optimal results which is desired

in this comparison.

50

The code is executed with the spark-submit command and runs in the JVM.
In each benchmark run all of the data as described in Chapter 3 is processed

by the system.

6.3 Result

In this section I will discussed the results of the benchmarks explained above.

The answer to the basic requirements posed in the first section of this chapter

are given in the following table 6.1

Table 6.1: Evaluated requirements

Requirement Java Spirit Spirit-On-Spark
Outlier Detection YES YES
Streaming Operation NO YES
Distributed Computing NO YES
Production System NO YES

As described in Chapter 5, the Spirit-On-Spark algorithm was designed with
the streaming mode of operation and the move to a production system in
mind. This is opposed to the basic Java implementation, which proves the
functionality in an object-oriented language, as a port from earlier Matlab
code. Both approaches fulfil the outlier detection, as the core remains the

same.

51

6.4 Number of novelties

There is a proprietary novelty detection running at ESA previous to this thesis
project. It works as an offline analysis with fixed limits. We let both approaches

analyse the same data, as described in Chapter 3, and then compare the results.

Table 6.2: Algorithm result comparison

Novelty Detection ESA NovDect Spirit-On-Spark
Nr. of novelties 98 120
Streaming Operation NO YES

A desired outcome of the system is to get more possible novelty candiates,
which can then be quickly confirmed by Mission Operators on-site. There-

fore a higher number in the given test data is expected.

6.5 Throughput

Comparing the throughput from several test runs we get:

Java Spirit 53 obj/s (std. deviation 6)
Spirit-on-Spark 405 obj/s (std. deviation 113)

This shows a speedup of 840% for Spirit-on-Spark, compared to the previous

implementation.

These results only give the relative speed gain. The time constraint needs to be

tested as well. Is it possible to process the data created during one orbit in less

52

700

200

obj/s

mmm
AR AR EEEE EEEE RS R EE R R E R R R R R R R R

Figure 6.1: Throughput Java Implementation

obj/s

Figure 6.2: Throughput Spirit-on-Spark Implementation

53

than 15 minutes? (see Chapter 4 for details on this requirement)

The amount of data that a satellite produces during on orbit or between two
connections to a ground station needs to be estimated. Given the historical

data as described in Chapter 3, 300 PIDs have 191.205 data points in one orbit.

The above performance is 405 objects processed per second and the time du-
ration is 15 minutes. This gives the rough estimation of 364.500 on average,
with 262.800 as worst-case and 466.200 as best-case performance, within one

standard deviation.

The system is able to process the amount of data in the required time frame, as
191.205 data points can be easily processed in a hard time limit of 15 minutes.
Even under worst-case performance the average amount of data can be eas-
ily processed. There is enough performance buffer included in the system to

handle short peaks of larger amounts of data coming in through the pipeline.

54

Chapter 7

Conclusion

From the initial problem scenario and the given environment, the objectives
for this thesis can be summarised as: Design a system which is able to detect
outliers in streaming telemetry data, especially in the time-constraint of a sin-
gle overpass. The defined requirements are: the input as telemetry time series,
a streaming mode of operation and an algorithm that leverages distributed

computing. All of these challenges were met.

This thesis proposes a solution based on distributed computing and the
SPIRIT algorithm. It merges the best of the SPIRIT algorithm with a dis-
tributed PCA method to improve performance. The initial goal, to speed up
the outlier processing, was fulfilled. Fast live processing during one orbit of
an Earth-observing satellite is available. Expecting a 30 minute window of
communication, the data from one orbit can be analysed in 15 minutes. The
second half of the window can therefore be used by human operators to plan

and execute actions based on the analysis result.

The project provides an 8x speed improvement compared to previous imple-

55

mentations. The new Spirit-on-Spark is faster, ready for production, and eas-
ily expandable. The SPIRIT algorithm can now be leverage in a distributed

computing environment.

An original contribution of this thesis is the new multi-threaded, distributed
computing algorithm and environment for outlier detection algorithms. The
functionality is proven with the SPIRIT algorithm. The provided work in this
thesis is a combination of research in distributed computing and implementa-
tion of these findings. The computing environment facilitates simple compar-
ison of a host of different approaches to novelty detection. It is highly modular

and can still be used to compare performances in fixed benchmarks.

The two different setups, development and production, are additional results
of this project. These environments are the most fitting for their respective
tasks. At the core they are similar with message broker and computing cluster,

but differ in inputs and outputs.

In which ways this thesis can be the basis for future work is explained in the

next chapter.

56

Chapter 8

Future work

The presented work has the potential to be expanded in several directions.

A straightforward extension is to move the current setup to a production sys-
tem, with a proper message broker on a separate server, several topics and
subscribers for multiple missions. This requires work in the move to a new
environment, as well as setup and configuration work. Concepts for data re-

dundancy and the storage of outlier information could be developed.

Another direction is to expand the computing cluster across several servers
and to connect those with a high-speed network. This would provide more
computing power for faster data processing. With a multi-purpose computing
farm, several missions could be provided with real-time outlier information.
The opposite approach, servers dedicated to single missions, would result in

unused resources, which is not recommended.

After outliers are detected they need to be analysed by human operators. This

process could be sped up by using projects such as ElasticSearch [42], a dis-

57

tributed search engine and Hadoop [43], a framework for storing data on large

clusters.

Another interesting route to expand this thesis is to combine new techniques
with the SPIRIT algorithm, such as distributed pattern recognition given in
[44]. This requires a major extension of the work, which would then be able

to fully leverage the nature of the distributed computing environment.

Another path is to replace SPIRIT altogether with another type of detection
technique. Candidates for this replacement would be semi-supervised learn-
ing algorithms, that can be trained ahead of the satellite deployment, to facil-
itate improved accuracy and speed. The training and the utilisation in pro-
duction has to be of concern in the spacecraft design process before launch.
Therefore it is an endeavour for future Space missions, which can build on the

work of this thesis.

58

References

[1] Robert H. Shumway DSS. Time series analysis and its applications. 3rd ed. Springer;
2011.

[2] Esling P, Agon C. Time-series data mining. ACM Comput Surv 2012;45:12:1-12:34.

Available at: http://doi.acm.org/10.1145/2379776.2379788.

[3] Shatkay H, Zdonik SB. Approximate queries and representations for large data se-
quences. In:. Proceedings of the twelfth international conference on data engineering,
Washington, DC, USA: IEEE Computer Society; 1996, pp. 536-45. Available at: http:

//dl.acm.org/citation.cfm?id=645481.653263.

[4] Oliveira ALI, Lemos Meira SR de. Detecting novelties in time series through neural
networks forecasting with robust confidence intervals. Neurocomputing 2006;70:79-92.

Available at: http://dx.doi.org/10.1016/j.neucom.2006.05.008.
[5] V. Barnett TL. Outliers in statistical data 3rd edition 1994:584 pp.

[6] Ryan], Ryan], Lin M-j, Miikkulainen R. Intrusion detection with neural networks.

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 1998;10:943-9.

[7] Aggarwal CC. Outlier analysis. Springer; 2013. Available at: http://dx.doi.org/

10.1007/978-1-4614-6396-2.

[8] Markou M, Singh S. Novelty detection: A review - part 1: Statistical ap-
proaches. Signal Process 2003;83:2481-97. Available at: http://dx.doi.org/10.1016/

59

http://doi.acm.org/10.1145/2379776.2379788
http://dl.acm.org/citation.cfm?id=645481.653263
http://dl.acm.org/citation.cfm?id=645481.653263
http://dx.doi.org/10.1016/j.neucom.2006.05.008
http://dx.doi.org/10.1007/978-1-4614-6396-2
http://dx.doi.org/10.1007/978-1-4614-6396-2
http://dx.doi.org/10.1016/j.sigpro.2003.07.018
http://dx.doi.org/10.1016/j.sigpro.2003.07.018

j.sigpro.2003.07.018.

[9] Hodge V7], Austin J. A survey of outlier detection methodologies. Artificial Intelligence
Review 2004;22:2004.

[10] Koskivaara E. Artificial neural network models for predicting patterns in auditing
monthly balances. Journal of the Operational Research Society 2000;51:1060-9. Available

at: http://dx.doi.org/10.1057/palgrave.jors.2601014.

[11] Pimentel MAE, Clifton DA, Clifton L, Tarassenko L. Review: A review of novelty
detection. Signal Process 2014;99:215-49. Available at: http://dx.doi.org/10.1016/

j.sigpro.2013.12.026.

[12] Sola J, Sevilla J. Importance of input data normalization for the application of
neural networks to complex industrial problems. IEEE Transactions on Nuclear Science

1997;44:1464-8.

[13] Forman G. BNS feature scaling: An improved representation over tf-idf for svm text
classification. In:. Proceedings of the 17th acm conference on information and knowl-
edge management, New York, NY, USA: ACM; 2008, pp. 263-70. Available at: http:

//doi.acm.org/10.1145/1458082.1458119.

[14] Aksoy S, Haralick RM. Feature normalization and likelihood-based similarity mea-
sures for image retrieval. Pattern Recogn Lett 2001;22:563-82. Available at: http://

dx.doi.org/10.1016/50167-8655(00)00112-4.

[15] Lee JA, Verleysen M. Nonlinear dimensionality reduction. 1st ed. Springer Publish-

ing Company, Incorporated; 2007.

[16] Fu T-c. A review on time series data mining. Engineering Applications of Artificial
Intelligence 2011;24:164-81. Available at: http://www.sciencedirect.com/science/

article/pii/S0952197610001727.
[17] Jolliffe I. Principal component analysis. Springer Verlag; 2002.

[18] University TPS. STAT 897D: Applied data mining and statistical learning n.d. Avail-

60

http://dx.doi.org/10.1016/j.sigpro.2003.07.018
http://dx.doi.org/10.1057/palgrave.jors.2601014
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://doi.acm.org/10.1145/1458082.1458119
http://doi.acm.org/10.1145/1458082.1458119
http://dx.doi.org/10.1016/S0167-8655(00)00112-4
http://dx.doi.org/10.1016/S0167-8655(00)00112-4
http://www.sciencedirect.com/science/article/pii/S0952197610001727
http://www.sciencedirect.com/science/article/pii/S0952197610001727

able at: https://onlinecourses.science.psu.edu/stat857/node/11.

[19] Coulouris G, Dollimore J, Kindberg T, Blair G. Distributed systems: Concepts and
design. 5th ed. USA: Addison-Wesley Publishing Company; 2011.

[20] 2016. Available at: http://www.ntp.org/.

[21] Gupta M. AC Gao J. Outlier detection for temporal data - a tutorial n.d. Available at:

https://www.siam.org/meetings/sdm13/gupta.pdf.
[22] Solenix 2016. Available at: http://solenix.ch/.
[23] ESA 2016. Available at: http://www.esa.int/ESA.

[24] Data pipeline - best practices 2016. Available at: http://radar.oreilly.com/2015/

09/three-best-practices-for-building-successful-data-pipelines.html.

[25] DTAP—Development, testing, acceptance, and production 2016. Available at:
https://www.phparch.com/2009/07/professional-programming-dtap-%e2%80%93-

part-1-what-is-dtap/.
[26] Apache spark 2016. Available at: https://spark.apache.org/.

[27] Karau H, Konwinski A, Wendell P, Zaharia M. Learning spark: Lightning-fast big
data analytics. 1st ed. O'Reilly Media, Inc. 2015.

[28] Apache spark code repo 2016. Available at: https://github.com/apache/spark/.

[29] McConnell S. Code complete, second edition. Redmond, WA, USA: Microsoft Press;
2004.

[30] Message broker - working with topics 2016. Available at: https://docs.wso02.com/

display/MB300/Working+with+Topics.

[31] Kafka at netflix 2016. Available at: http://www.slideshare.net/wangxia5/

netflix-kafka.

[32] Kafka at paypal 2016. Available at: http://www.slideshare.net/Couchbase/

paypal-creating-a-central-data-backbone-couchbase-to-couchbase-to-kafka-

61

https://onlinecourses.science.psu.edu/stat857/node/11
http://www.ntp.org/
https://www.siam.org/meetings/sdm13/gupta.pdf
http://solenix.ch/
http://www.esa.int/ESA
http://radar.oreilly.com/2015/09/three-best-practices-for-building-successful-data-pipelines.html
http://radar.oreilly.com/2015/09/three-best-practices-for-building-successful-data-pipelines.html
https://www.phparch.com/2009/07/professional-programming-dtap-%e2%80%93-part-1-what-is-dtap/
https://www.phparch.com/2009/07/professional-programming-dtap-%e2%80%93-part-1-what-is-dtap/
https://spark.apache.org/
https://github.com/apache/spark/
https://docs.wso2.com/display/MB300/Working+with+Topics
https://docs.wso2.com/display/MB300/Working+with+Topics
http://www.slideshare.net/wangxia5/netflix-kafka
http://www.slideshare.net/wangxia5/netflix-kafka
http://www.slideshare.net/Couchbase/paypal-creating-a-central-data-backbone-couchbase-to-couchbase-to-kafka-to-hadoop-and-back-couchbase-connect-2015
http://www.slideshare.net/Couchbase/paypal-creating-a-central-data-backbone-couchbase-to-couchbase-to-kafka-to-hadoop-and-back-couchbase-connect-2015
http://www.slideshare.net/Couchbase/paypal-creating-a-central-data-backbone-couchbase-to-couchbase-to-kafka-to-hadoop-and-back-couchbase-connect-2015

to-hadoop-and-back-couchbase-connect-2015.

[33] Kafka at spotify 2016. Available at: https://labs.spotify.com/2016/02/25/

spotifys-event-delivery-the-road-to-the-cloud-part-i/.

[34] n.d. Available at: https://engineering.linkedin.com/kafka/benchmarking-

apache-kafka-2-million-writes-second-three-cheap-machines.
[35] Python3 2016. Available at: https://docs.python.org/3/.

[36] Papadimitriou S, Papadimitriou S, Sun J, Faloutsos C. Streaming pattern discovery in

multiple time-series. IN VLDB 2005:697-708.
[37] Matlab 2016. Available at: http://mathworks.com/products/matlab/.
[38] Colt 2016. Available at: https://dst.1bl.gov/ACSSoftware/colt/.

[39] JAMA: A java matrix package 2016. Available at: http://math.nist.gov/

javanumerics/jama/.
[40] EJML 2016. Available at: http://ejml.org/wiki/index.php?title=Main_Page.

[41] QuY, Ostrouchov G, Samatova N, Geist A. Principal component analysis for dimen-

sion reduction in massive distributed data sets. In:, 2002.
[42] ElasticSearch 2016. Availableat: https://www.elastic.co/products/elasticsearch.
[43] Hadoop 2016. Available at: https://hadoop.apache.org/.

[44] Sun], Papadimitriou S, Faloutsos C. Distributed pattern discovery in multiple
streams. In: Ng W-K, Kitsuregawa M, Li], Chang K, editors. Advances in knowledge
discovery and data mining: 10th pacific-asia conference, pakdd 2006, singapore, april
9-12, 2006. proceedings, Berlin, Heidelberg: Springer Berlin Heidelberg; 2006, pp. 713-8.

Available at: http://dx.doi.org/10.1007/11731139_82.

62

http://www.slideshare.net/Couchbase/paypal-creating-a-central-data-backbone-couchbase-to-couchbase-to-kafka-to-hadoop-and-back-couchbase-connect-2015
https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://labs.spotify.com/2016/02/25/spotifys-event-delivery-the-road-to-the-cloud-part-i/
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://docs.python.org/3/
http://mathworks.com/products/matlab/
https://dst.lbl.gov/ACSSoftware/colt/
http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
http://ejml.org/wiki/index.php?title=Main_Page
https://www.elastic.co/products/elasticsearch
https://hadoop.apache.org/
http://dx.doi.org/10.1007/11731139_82

	Abstract
	List of figures
	List of tables
	Introduction
	Problem Statement
	Thesis outline

	Theory: Concepts & Definitions
	Timeseries
	Summarisation
	Prediction
	Novelty Detection
	Normalisation
	Moving average
	Dimension reduction
	Principal Component Analysis (PCA)

	Distributed computing

	Data Review
	Values
	Range
	Sample Rate

	Requirements
	Data Pipeline
	Development to Production

	Implementation
	Data pipeline implementation
	Technology Stack
	Apache Spark
	Scala & JVM
	Kafka & ZooKeeper
	DB2Kafka
	PlotMeisterTS

	Algorithm
	Spirit

	Evaluation
	Benchmark
	Setup
	Result
	Number of novelties
	Throughput

	Conclusion
	Future work
	References

